
- 1. substitution/hydrolysis (1) (i)
 - electron pair donor (1) 1 (ii)
 - (iii)

correct dipole (1)

curly arrow from the O in the OH- to C in the CH₂ (1)

curly arrow to show movement of bonded pair in the C-Br bond (1)

Br as a product (1)

[6]

1

4

2

2. Any two realistic fragments,

e.g. CH_3^+ : 15; $C_2H_5^+$: 29; $C_3H_7^+$: 43; $C_4H_9^+$: 57; OH^+ : 17, etc. (1) (1)

Do not penalise missing charge.

breathalysers/monitoring of air pollution, MOT emission testing, etc. (1) (ii) 1

[3]

3. Availability of starting materials:

availability

sugar is renewable because it can be grown (1)

ethane is finite because it is obtained by processing of crude oil (1)

energy:

fermentation: energy is required for distillation/

hydration: energy is required to generate steam (1)

atom economy and waste products:

atom economy for fermentation < atom economy hydration (1) In fermentation, CO₂ is produced in addition to ethanol/ethanol is

not the only product (1) In hydration, ethanol is the only product/hydration is an addition

reaction (1) Atom economy of fermentation could be increased by finding a use $CO_2(1)$

Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy (1) 7max

[7]

- **4.** (a) (i) (volatile components) can escape/distil out (1) ethanal is most volatile/bpt less than 60 °C/partial oxidation (1) 2
 - (ii) (volatile components) cannot escape/ refluxed (1) complete oxidation will be achieved/oxidised to the acid (1) 2
 - (b) $C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$ $C_2H_5OH, 2[O] \text{ and } CH_3COOH (1)$ rest of equation (1)

[6]

2

- 5. (i) $C_6H_{12}O_6$ (aq) \rightarrow $2C_2H_5OH(l)$ or (aq) + $2CO_2(g)$ balanced equation state symbols can be awarded only if equation shows $C_6H_{12}O_6$, C_2H_5OH and CO_2
 - (ii) anaerobic, aqueous, temp range $25 40^{\circ}$ C/warm to just above room temp 2
 - (iii) no more bubbles/gas/CO₂

[5]

- **6.** (a) (i) phosphoric acid/H⁺/sulphuric acid 1
 (ii) lone/electron pair of electrons acceptor 1
 - (b) (i)

$$CH_{3} \xrightarrow{H} C \xrightarrow{CH_{3} H} H \xrightarrow{CH_{3} H} H$$

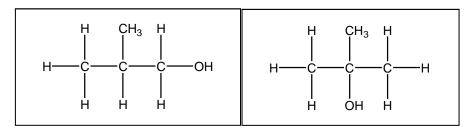
Step 1	curly arrow from π -bond to H^+	1
Step 2	curly arrow from lone pair on the O^{δ} to C+	1
Step 3	curly arrow from O—H bond to O+	1

(ii) catalyst ... no marks because it is **not** consumed/used up in the reaction/owtte

[6]

1

7. $CH_3CH(OH)CH_3 + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O/C_3H_8O$


(1 mark if correct formula for all four chemicals and 1 mark for correct balancing)

[2]

2

1

8. (i)

(ii) either (2-)methylpropan-1-ol or (2-)methylpropan-2-ol

[3]

9.

Minimum – must display/show C=C

[3]

- 10. (a) (i) H^+ 1 $Cr_2O_7^{2-}$ 1
 - (ii) Orange to green/black/blue 1

- (b) contains a C=O/aldehyde, ketone, carboxylic acid and ester/ (i) carbonyl/carbonyl in an aldehyde
 - does not contain a O-H/ (hydrogen bonded in a) carboxylic acid 1 (ii)
 - (iii) distillation (no mark) because distillation allows loss of volatile 1 components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved 1 or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed

[7]

1

1

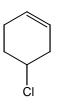
11. (a) (i)

H₂SO₄/Al₂O₃/(hot) pumice/H₃PO₄ 1 (ii) (H₂SO₄(aq) or dil H₂SO₄ loses the mark)

(iii) 1

 $C_6H_{11}OH / C_6H_{12}O \rightarrow C_6H_{10} + H_2O$

(b) 1 (i)


Cl-alcohol

(ii)

from the diol allow

from the Cl-alcohol allow

2

[6]

12. (i) low volatility, = **high** boiling point/ not easy to vapourise/owtte 1 intermolecular bonds. = bonds/forces/attractions **between** molecules 1

type of intermolecular bond = hydrogen bond 1

dipoles on both O-H bonds

H-bond shown as a 'dashed bond' 1

(iii) (The boiling point of glycerol will be higher than ethanol because there are) more OH groups ∴ more H-bonds

[6]

1

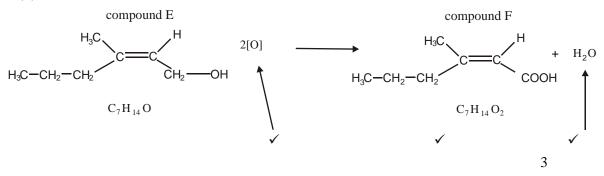
13. (a) (i) butan-2-ol by name or by formula \checkmark

(ii)

(ii)

curly arrow from the O of the OH- to $C^{(\delta^+)}$ \checkmark curly arrow from C-Cl bond to Cl <u>and</u> correct dipoles \checkmark correct products/ allow NaCl \checkmark curly arrow from lone pair on :OH- \checkmark

 S_N1 route can still score all 4 marks:


curly arrow from C-Cl bond to Cl <u>and</u> correct dipoles \checkmark curly arrow from the O of the OH⁻ to C+ ion \checkmark correct products/ allow NaCl \checkmark curly arrow from lone pair on :OH⁻ \checkmark

[5]

14. (i)
$$H^+ \checkmark Cr_2O_7^{2-}$$

2

(ii)

(iii) carboxylic acid would have an absorption between $1680 - 1750 \text{ cm}^{-1} / 1700 \text{ cm}^{-1}$ or $2500 - 3300 \text{ cm}^{-1}$.

[6]

15. (a) (i) H_2SO_4 – any mention of (aq) loses the mark

1

1

(ii) any correct formula/structure or name for benzoic acid

1

1

[4]

[8]

- (b) (i) dichromate/Cr₂O₇²⁻/permanganate
 - (ii) 1

$$C_6H_{12}O + [O] \longrightarrow C_6H_{10}O + H_{2}O$$

16. (i)

require an attempt at a 3D structure and bond angles must clearly not be 90°.

require at least one 'wedge' bond or one 'dotted' bond

- (ii) 108 111°
- (iii) volatile/low boiling/gas/non-toxic/non-flammable/unreactive/liquefied under pressure/inert 1
- (iv) homolytic = bonded pair split <u>equally</u>/ each retains 1 electron

 fission = <u>bond</u> breaking

 1
- (v) C-Cl (no mark) because it is the <u>weaker bond</u>
- (vi) $Cl \bullet$ 1 $\bullet CF_3 \text{ (allow } CF_3 \bullet)$ 1

(lack of 'dots' penalise once)

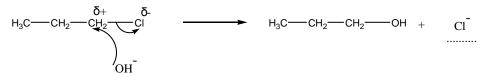
17. $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ $(C_2H_5OH \& CO_2 \checkmark)$ [2]

1

18.

(iii)

reaction 3


dipoles 1 hydrogen bond between O in one O-H and H in the other O-H 1 lone pair from O involved in the H-bond 1 [3] 19. (a) (i) (volatile components) can escape/distil out 1 ethanal is most volatile/b pt less than 60°C/partial oxidation 1 (ii) (volatile components) cannot escape/ refluxed 1 complete oxidation will be achieved/oxidised to the acid 1 $C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$ (b) $(CH_3COOH + H_2O \checkmark)$ 2 spectrum C (c) 1 spectrum C only shows absorption at 1700 cm⁻¹ for the C=O 1 the other two spectra contain the OH group absorption at approx 3000 cm⁻¹ 1 [9] 20. reaction 1 1 (a) (i) (ii) reaction 4 1

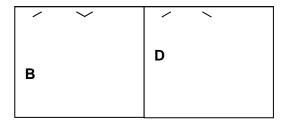
1

1

1

(b) (i) lone pair/electron pair donor

Correct dipole 1


Curly arrow from the O in the OH to C in the CH₂

Curly arrow to show movement of bonded pair in the C-Cl bond

CI as a product 1

(c) (i) same molecular formula , different structure/arrangement of atoms. 2 (same formula, different structure.)

(ii) 2



- (d) (i) addition, (not additional)
 - (ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1

(iii)

[15]

21. (a) (i) prop-2-en-1-ol CH₂=CHCH₂OH must show the C=C double bond acrolein

must clearly show the aldehyde group and the C=C

(ii) alkene/C=C double bond 1

- (b) (i) acidified /H⁺ 1
 dichromate/ $Cr_2O_7^{2-}$ 1

 (ii) $CH_2CHCH_2OH/C_3H_6O/C_3H_5OH + [O] \longrightarrow CH_2CHCHO/C_3H_4O/C_2H_3CHO + H_2O$ not CH_2CHCOH 1
- 22. (i) $CH_2CHCH_2OOCCHCH_2/(C_6H_8O_2)$ 1 H_2O 1

 (ii) 2

$$H_2C = CH - C - O - CH_2 - CH = CH_2$$

or

1 mark if the ester group, 1 mark for the rest of the molecule. COO/CO_2 without displaying the ester, they can still get 1 mark.

[4]

[6]

23. Essential marks:

OrderRI>RBr>RCl /owtte1reason for the orderC-I bond weakest/length/C-Cl bond strongest and mention/intermolc forces loses the mark1an equation $Ag^+ + X^- \longrightarrow AgX$ (solid or ppt) or an equation for hydrolysis/using OH- or H_2O 1

max = 3

Two possible methods of monitoring the reaction

Method 1	Method 2	
$AgNO_3$	AgNO ₃	1
Ethanol & Waterbath/ /hydroxide	NaOH/OH ⁻	1
temp 40 – 80°C not heat/not bunsen	& neutralise with HNO ₃	
relative <u>rate</u> of precipitation	relative <u>amount</u> of precipitation	1

[6]

24. Properties:

Non-toxic/harmless

non-flammable

any two from:

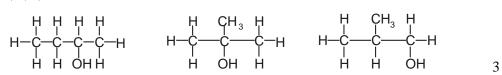
(propellant in) aerosols

because it is volatile/ unreactive/ non-toxic/ easily compressed

compressed

blowing polystyrene because it is unreactive

dry cleaning because it is a good solvent for organic material degreasing agent because it is a good solvent for organic material


fire extinguishers because it is non-flammable

QWC

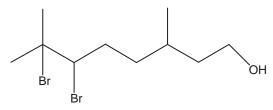
• reasonable spelling, punctuation and grammar throughout

[4]

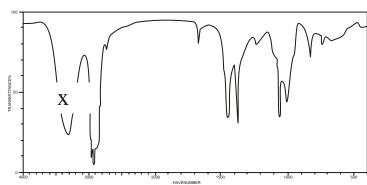
25. (a) **\(\sqrt{\sq}}}}}}}}}} \qrignt{\sqrt{\sq}}}}}}}}} \sqrt{\sq}}}}}}}}}}}}} \signtimeseptitexen\sqnt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sq}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sinq}}}}}}} \end{\sqrt{\sqrt{\sinq}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sinq}}}}}}}} \end{\sqrt{\sqrt{**

[14]

- (b) (i) <u>orange</u> to green/dark green/brown/black ✓ 1
 - (ii) $C_4H_9OH/C_4H_{10}O + 2[O] \rightarrow C_3H_7COOH + H_2O \checkmark\checkmark$ 2

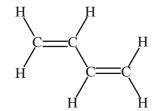

1 mark available for correct formula of the carboxylic acid

- (iii) Identify isomer 2-methylpropan-1-ol by appropriate number/name/formula ✓ 1
- (c) (i) CH_2 has mass = 14, $14 \times 4 = 56$ \checkmark


 $\therefore C_4H_8 \checkmark$

- (ii) $C_4H_9OH \rightarrow C_4H_8 + H_2O \checkmark$
- (iii) Identify butan-2-ol by appropriate number/name/formula 1
- (d) (i) $H_2SO_4 \checkmark$ 1
 - (ii) 0.06 **✓**
 - (iii) 60% **✓**

- **26.** (a) (i) alkene ✓ 1 alcohol/hydroxy/hydroxyl ✓ 1
 - (b) (i) I = alkene & II = alcohol... both are needed \checkmark
 - (ii) decolourised / colourless ✓
 - (iii) **✓**


(iv) \mathbf{X} as shown below \checkmark

(c) (i) Ni/Pt/Rh/Pd ✓ 1

compound **B** is $C_{10}H_{22}O$ (ii) 1 (iii) $C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$ 1 [9] $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \checkmark \checkmark$ 27. 2 $2CO_2 + 3H_2O$ gets 1 mark **Fermentation** (b) 1 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ 1 Yeast /enzyme / temperature about 30 °C/ batch process ✓ **Hydration** of ethene. ✓ 1 $C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$ 1 Temp > 100 °C/Press 370 – 100 atm / 6 – 20 MPa/phosphoric acid catalyst/ continuous process ✓ 1 Glucose is obtained from plants ✓ 1 Ethene is obtained from crude oil/cracking/fossil fuel ✓ 1 glucose is renewable/ethene isn't ✓ 1 1 mark available for Quality of written communication.... base the award of the mark on the ability to communicate the essential chemistry by correct use of at least two from: fermentation/hydration/catalyst/renewable/sustainable/biofuel/ enzymes/finite/cracking ✓ 1 [12] 28. (i) C_4H_{10} (a) 1 (ii) C₂H₅O ✓ 1 (iii) B and E ✓ 1 (iv) A and F ✓ 1 $(C_4H_9OH \rightarrow) C_4H_8 + H_2O \checkmark$ (b) 1

any unambiguous formula: ✓ (c)

CH₂CHCHCH₂

CH₂CHCHCH₂

buta-1,3-diene ✓ name ecf to the structure only if structure above has formula C_4H_6

[7]

1

1

 Cl^- must be shown as a product \checkmark 29. (a)

1

(at least 1) lone pair of electrons on the O in the OH with curly arrow

from the lone pair on the OH $\bar{}$ to the $C(^{\delta_{+}})\checkmark$ 1

dipoles on the C-Cl bond \checkmark 1

curly arrow from C-Cl bond to the $Cl^{\delta-}$ 1

The mechanism below would get all 4 marks.

mark for method/dividing by A_r / C, 3.15; H, 6.3; Cl, 1.58. \checkmark 1 (b) (i)

> divide by smallest to get $C_2H_4Cl \checkmark$ 1

alternative method:

% of each element $\times 127 \div A_r$ of that element = molecular formula, hence deduce empirical formula

(ii) $C_4H_8Cl_2$ 1 (iii) any unambiguous form of: ✓

(iv) any unambiguous form of: ✓

ecf to (iii) provided that there are two OHs in (iii)

[9]

1

1

1

30. (a) (i) Alkene/C=C ✓

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH or hydroxide) ✓ 1

(ii) One of the C in both C=C is joined to two atoms or groups that are the same ✓

(b) Observation decolourisation (of Br_2) \checkmark

Molecular formula $C_{10}H_{18}OBr_4 \checkmark \checkmark$ 2

 $C_{10}H_{18}OBr_2$ gets 1 mark

(c) reagent $CH_3COOH \checkmark$ 1

catalyst $H_2SO_4/H^+/HCl$ (aq) or dilute loses the mark \checkmark 1

- (d) (i) $C_{10}H_{18}O + 2[O] \rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$ 2 1 mark for H_2O and 1 mark for 2[O]
 - (ii) The infra-red spectrum was of compound \mathbf{Y}

because absorption between $1680 - 1750 \, \mathrm{cm}^{-1}$ indicates a C=O \checkmark 1 and the absence of a peak between $2500 - 3300 \, \mathrm{cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid \checkmark 1

[12]